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S1 The Labeled Coalescent Tree

Throughout this work, the term tree refers to a rooted binary tree. Let T = (V (T ), E(T )) be a tree with a
set V (T ) of nodes and a set E(T ) of directed branches (u, v). Let L(T ) ⊂ V (T ) denote the set of leaves of T ,
I(T ) = V (T ) \L(T ) denote the set of internal nodes, and r(T ) ∈ I(T ) denote the root node. For node v, let
c(v) denote its set of children, p(v) denote its parent, e(v) denote the branch (p(v), v), and T (v) denote the
(maximal) subtree of T rooted at v. Define ≤T to be the partial order on V (T ), where u ≤T v if u is a node
on the path between r(T ) and v (inclusive), and define ≥T analogously, that is, u ≥T v if v is a node on the
path between r(T ) and u (inclusive). For u 6= v, we say that u is an ancestor of v, or v is a descendant of
u, if u ≤T v. Given a non-empty set of nodes V ⊂ V (T ), let lcaT (V) denote the shared ancestor of V that
is located farthest from the root. Finally, for u, v ∈ V (T ), let dT (u, v) denote the number of edges on the
unique path from u to v in T .

Assume that we are given a gene tree (topology) G, a species tree (topology) S, and a leaf mapping
Le : L(G) → L(S).

Definition S1.1. The LCT for G, S, Le is a tuple 〈M,L,L,O〉, where

• M : V (G) → V (S) defines a species map that maps each node of G to a node of S,

• L defines a locus set, that is, a set of loci that have evolved within the gene family,

• L : V (G) → L defines a locus map that maps each node of G to a locus in L, and

• O defines a partial order on V (G). For s ∈ V (S), let parent loci(s) ⊂ L denote the set of loci that
yield a new locus in species s. Then for s ∈ V (S) and l ∈ parent loci(s), O enforces a total order on the
set of nodes O(s, l) = { g : g ∈ V (G); g 6= r(G); M(g) = s; L(p(g)) = l }. For g, g′ ∈ O(s, l) : g 6= g′,
define g <O g′ if g precedes g′,

subject to the following constraints:

1. If g ∈ L(G), then M(g) = Le(g).

2. If g ∈ I(G), then for g′ ∈ c(g), M(g) ≤S M(g′).

3. For g, g′ ∈ L(G) : g 6= g′, if M(g) = M(g′), then L(g) 6= L(g′).

4. For l ∈ L, ∃g ∈ V (G) : L(g) = l.

5. For l ∈ L, let N(l) = { g : g ∈ V (G); g 6= r(G); L(g) = l; L(p(g)) 6= l }. Then |N(l)| ≤ 1, where
equality holds everywhere except for l = L(r(G)).
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6. For s ∈ V (S), l ∈ parent loci(s), g, g′ ∈ O(s, l) : g 6= g′, if g <O g′, then g �G g′.

Constraint 1 above ensures that M is consistent with the known leaf mapping, and constraint 2 imposes on
M the temporal constraints implied by S. Constraint 3 imposes on L that genes within the same extant
species must belong to different loci, constraint 4 restricts L to the range of L, and constraint 5 imposes
that for every locus, the nodes that map to that locus must belong to a single component so that each locus
is created only once. Finally, constraint 6 imposes on O the temporal constraints implied by G.

Before we develop the LCT further, note that from constraint 4, the locus set L is defined by the locus
map L; therefore, in the main manuscript and in the remainder of this work, we reduce the LCT notation
to a tuple 〈M,L,O〉. In addition, as mentioned in the main manuscript, the LCT also includes implied
speciation nodes (Supplemental Section S1.1).

S1.1 Implied Speciation Nodes

For g ∈ I(G), let spec(g) be a boolean variable that denotes whether g is a speciation node. That is spec(g)
is true if ∀g′ ∈ c(g),M(g) 6= M(g′) and false otherwise. In this section, we discuss how to add speciation
nodes that are hidden in the gene tree; such implied speciation nodes are added to G and included in M,
L, and O.

Implied speciation nodes are necessary when branches of the gene tree span multiple branches of the
species tree. To break up gene tree branches, locate all g ∈ V (G)\{r(G)} such that (a) p(M(g)) 6= M(p(g))
or (b) ¬spec(p(g)) and M(g) 6= M(p(g)). Replace edge (p(g), g) with a new node v and two new edges
(p(g), v) and (v, g), and set M(v) = p(M(g)). Repeat until there exist no g exist that satisfy the above
conditions.

In addition, by definition, if a speciation node has multiple children, then these children must map to
different species. To account for this, locate all g ∈ I(G) such that spec(g) and M(g′) = M(g′′), where g′

and g′′ denote the children of g. (Note that no such g exist if M is the LCA reconciliation. This is because
in the LCA reconciliation, if M(g′) = M(g′′) = s, then M(g) = s so that spec(g) is false; that is, the two
conditions are mutually exclusive.) For g′ ∈ c(g), replace edge (g, g′) with a new node v and two new edges
(g, v) and (v, g′), and set M(v) = M(g).

S1.1.1 Delayed Speciation Nodes

A delayed speciation node is a special type of implied speciation node. Unlike previous implied speciation
nodes, delayed speciation nodes are not hidden as a result of gene loss or deep coalescence. Rather, these
are necessary to model delays between speciation and coalescence. That is, while gene tree nodes are found
within a species tree branch, M maps V (G) to V (S) rather than E(S). In effect, the LCT rounds speciation
nodes to the breakpoint between species (Supplemental Figure S2A). To correct for this, the LCT includes
delayed speciation nodes (Supplemental Figure S2B). To add these, locate all g ∈ I(G) such that spec(g)
and |c(g)| > 1. For g′ ∈ c(g), replace edge (g, g′) with a new node v and two new edges (g, v) and (v, g′),
and set M(v) = M(g). By default, delayed speciation nodes are not included in the LCT when inferring a
MP LCT using DLCpar. In the remainder of this section, we discuss how this affects evolutionary events
and our reasoning behind this choice.

Definition S1.2. Within each species, consider two lineages that exist to the speciation event such that,
looking backwards in time, the two lineages have coalesced in a locus in this species. A post-coalescence
duplication is a duplication has occurred in the locus in the time between the speciation event and the
coalescence event. Formally, for g ∈ I(G), g′, g′′ ∈ c(g) : g′ 6= g′′; M(g) = M(g′) = M(g′′); spec(g′) ∧
spec(g′′); |c(g′)| = 1∧|c(g′′)| = 1, then (g, g′) and (g, g′′) are two lineages that have existed to the speciation
event and coalesced at g in locus l = L(g) in species s = M(g). A post-coalescence duplication is one that
has occurred along (g, g′) so that L(g′) 6= l or along (g, g′′) so that L(g′′) 6= l.

Remark. To understand the last requirement |c(g′)| = 1 ∧ |c(g′′)| = 1, note that if |c(g′)| > 1 or |c(g′′)| > 1,
then it is the lineages in s immediately following g′ or g′, respectively, that exist to the speciation event.

We now consider the relationship between delayed speciation nodes and post-coalescence duplications
(Supplemental Figure S2C).
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Proposition S1.1. Delayed speciation nodes are required if and only if post-coalescence duplications exist.

Finally, the concept of a post-coalescence duplication is not intuitive; therefore, we relate it to LCA
reconciliation between the locus tree and species tree.

Proposition S1.2. Assume that losses incur a positive cost. If the reconciliation between the locus tree and
species tree is the LCA mapping, then there are no post-coalescence duplications.

In simulation, we found LCA reconciliation between the locus tree and the species tree occurred in at least
99.6% (94.2%) of gene families when duplications and losses are simulated at 1× (4×) the rate estimated
from real data. Using Proposition S1.2, this is a lower bound for the number of gene families with no
post-coalescence duplications.

S1.2 Inferring Evolutionary Events in the LCT

For reasons that will become clear later, we consider evolutionary events separately for each species tree
branch, but first, we define some useful functions for relating how gene tree nodes map within species tree
branches. (To reduce notational complexity, in the remainder of this work, unless otherwise noted, the
dependency on G, S, M, L, and O are implicit in our function definitions.) For s ∈ V (S), let nodes(s) be
the set of gene tree nodes mapped to s and leaves(s) and roots(s) be the set of gene tree nodes mapped to the
bottom and top of species tree branch e(s), respectively. That is, nodes(s) = { g : g ∈ V (G); M(g) = s },
leaves(s) = { g : g ∈ nodes(s); (g ∈ L(G) ∨ ∀g′ ∈ c(g), g′ /∈ nodes(s)) }, and roots(s) = leaves(p(s))
if s 6= r(S) and roots(s) = ∅ otherwise. (Note that under these definitions, nodes(s) does not include
roots(s).) Finally, for a set of gene tree nodes G ⊂ V (G), let loci(G) = { l : l = L(g); g ∈ G } be the set of
associated loci.

Definition S1.3. For G, S, Le and LCT α = 〈M,L,O〉, the following evolutionary events are defined:

• Duplication For s ∈ V (S), let D(s) = { g : g ∈ nodes(s); g 6= r(G); L(g) 6= L(p(g)) } be the
set of gene tree nodes within e(s) that are the result of a duplication. Then nD(s) = |D(s)| and
nDα =

∑
s∈V (S) nD(s) are the number of duplications in a species and in the LCT, respectively.

• Loss For s ∈ V (S), let lost loci(s) = { l : l ∈ loci(roots(s) ∪ nodes(s)) \ loci(leaves(s)) } be the set of
loci lost within e(s). Then nL(s) = |lost loci(s)| and nLα =

∑
s∈V (S) nL(s) are the number of losses

in a species and in the LCT, respectively.

• Deep coalescence In the following, for a set X of lineages, define the number of extra lineages as
extra(X ) = max(0, |X | − 1).

– ILS due to speciations: At the top of species tree branch e(s) for s ∈ V (S), let the lineages in
locus l ∈ loci(roots(s)) be given by CS(s, l) = { (g, g′) : (g, g′) ∈ E(G); g ∈ roots(s); L(g) = l }.
Then nCS(s) =

∑
l∈loci(roots(s)) extra(CS(s, l)) and nCSα =

∑
s∈V (S) nCS(s) are the number of

extra lineages induced by speciations in a species and in the LCT, respectively.

– ILS due to duplications: For s ∈ V (S), let parent loci(s) = { l : l = L(p(g)); g ∈ D(s) }. Then,
for s ∈ V (S), l ∈ parent loci(s), the number nCD(s, l) of contemporary lineages with locus l
at the time of a duplication, summed over all duplications in s and l, can be determined by
Algorithm S1, and nCD(s) =

∑
l∈parent loci(s) nCD(s, l) and nCDα =

∑
s∈V (S) nCD(s) are the

number of extra lineages induced by duplications in a species and in the LCT, respectively.

Finally, nC(s) = nCS(s) + nCD(s) and nCα = nCSα + nCDα =
∑

s∈V (S) nCS(s) + nCD(s) are the
number of extra lineages in a species and in the LCT, respectively.

S2 The DLCpar Algorithm

S2.1 Problem Statement

Definition S2.1. Given G, S, Le, D, L, C, the reconciliation cost for LCT α = 〈M,L,O〉 is Rα =
D · nDα + L · nLα + C · nCα.
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Algorithm S1 Counting extra lineages due to duplications

Input: G, s ∈ V (S), l ∈ parent loci(s), 〈M,L,O〉
Output: nCD(s, l)
1: Let Ô(s, l) be the ordered set of nodes such that the set of nodes in Ô(s, l) is equal to O(s, l) and the

order of nodes in Ô(s, l) satisfies O. That is, for g, g′ ∈ Ô(s, l) : g 6= g′, g precedes g′ if and only if
g <O g′.

2: Let start lineages(s, l) = { (g, g′) : (g, g′) ∈ E(G); (g ∈ D(s) ∨ g = r(G) ∨ g ∈ roots(s)); g′ ∈
nodes(s); L(g) = l } be the set of starting lineages.

3: Initialize CD(s, l) = start lineages(s, l) and nCD(s, l) = 0.
4: for g′ ∈ Ô(s, l) do {traverse nodes using the partial order O}
5: Set l′ = L(g′).
6: if not g′ ∈ L(G) ∧ l′ = l then {node is not an extant gene in the same locus}
7: Remove (p(g′), g′) from CD(s, l).
8: if l′ = l then {node is mapped to the same locus}
9: ∀g′′ ∈ c(g′), add (g′, g′′) to CD(s, l).

10: else {node is mapped to a new locus, that is, a duplication has occurred}
11: Add extra(CD(s, l)) to nCD(s, l).

Problem S2.1. Given G, S, Le, D, L, C, the MP LCT is α∗ = 〈M∗,L∗,O∗〉 = argminα Rα.

Problem S2.2. Given G, S, Le, D, L, C, the restricted MP LCT is α∗ = 〈M∗,L∗,O∗〉 = argminα Rα

subject to the condition that the reconciliation between the locus tree and species tree is the LCA mapping.

For Problems S2.1 and S2.2, α∗ is not necessarily unique. Furthermore, Problem S2.2 enforces an
additional constraint on the MP LCT, in particular, that the reconciliation between the locus tree and
the species tree is the LCA mapping. To understand this restriction, recall that the LCT is a simplified
representation of the three-tree DLCoal model. Thus, inferring a LCT is equivalent to inferring three
components: a locus tree (with annotated daughter lineages), a reconciliation between the gene tree and
locus tree, and a reconciliation between the locus tree and species tree. Naively, in a MP LCT, we could
enforce that the two reconciliations must be the LCA mapping, as we know that the LCA mapping between
the gene tree and locus tree minimizes the number of extra lineages, and the LCA mapping between the locus
tree and species tree minimizes the number of duplications and losses. However, these two reconciliations are
not independent; in particular, there exist reconciliations that violate at least one of the LCT constraints.
Therefore, to make our algorithm more efficient, we constrain the reconciliation between the locus tree and
species tree so that rather than inferring a global MP LCT (Problem S2.1), we infer a restricted MP LCT
(Problem S2.2). Determining the gap between the global and restricted MP solutions is non-trivial, so
instead, we used simulations to ask how often the true LCT satisfies the additional constraint: we found
that the reconciliation between the locus tree and species tree is the LCA mapping in at least 99.6% (94.2%)
of gene families when duplications and losses are simulated at 1× (4×) the rate estimated from real data. For
simplicity, in the main manuscript and in the remainder of this work, we have omitted the term restricted
and understand that a MP LCT always refers to a restricted MP LCT.

S2.2 Main Algorithm

In the remainder of this section, to keep track of the current LCT α = 〈M,L,O〉, dependencies on α (or
parts of α) are explicit in our function definitions and will be denoted using subscripts. The main algorithm
is shown in Algorithm S2. Throughout, if multiple optima exist, one is chosen randomly.

S2.3 Inferring an Optimal Species Map

Without a species map, we cannot determine how the gene tree fits within the species tree. Thus, in this
step of the algorithm, all internal nodes g ∈ I(G) of the gene tree have more than one child; that is, the
LCT does not contain implied speciation nodes. As the leaf mapping Le of extant genes to extant species is
known, our goal is to map each internal gene tree node g ∈ I(G) to a species tree node s ∈ V (S).
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Algorithm S2 DLCpar

Input: G, S, Le, D, L, C
Output: M∗, L∗, O∗

1: Use LCA to find M∗.
2: Prune the species tree to Ŝ = S(M∗(r(G))).
3: Add implied speciation nodes and factor G (Figure 3A).
4: for s ∈ preorder(Ŝ) do
5: Use EnumerateLoci to find the set L(s) of locus maps for nodes in this species tree branch. That

is, each item of L is one choice for Ls : rootsM∗(s) ∪ nodesM∗(s) → L (Figure 3B, top).
6: for Ls ∈ L(s) do
7: Use FindOrder to find an optimal order (associated with this locus map) O∗

Ls
.

8: Compute the reconciliation cost for this species. For α = 〈M∗,Ls,O∗
Ls
〉, Rα(s) = D · nDα(s) + L ·

nLα(s) + C · (nCSα(s) + nCDα(s)) (Figure 3B, bottom).
9: Use RemapLoci to map the set L(s) of absolute locus maps to a set RL(s) of relative locus maps.

Each item of RL(s) is one choice for RLs : leavesM∗(s) → L̂. This also returns RAs : RL(s) → L(s),
which maps each relative locus map to an optimum underlying absolute locus map (Figure 3C), and
a cost function Cs(lt, lb), which denotes the minimum cost of assigning lt and lb to rootsM∗(s) and
leavesM∗(s).

10: Use FindOptimum to find optimal relative locus maps RL∗
s ∀s ∈ V (Ŝ) (Figure 3E).

11: For s ∈ V (Ŝ), find L∗
s using RL∗

s and RAs. Then lookup O∗
Ls
.

12: Put together L∗
s and O∗

Ls
∀s ∈ V (Ŝ) to determine L∗ and O∗.

Theorem S2.1. If α∗ = 〈M∗,L∗,O∗〉 is a MP LCT, then an optimal species map M∗ is the LCA mapping.

Theorem S2.1 allows us to infer an optimal species map M∗ using the LCA mapping; for completeness,
we reproduce the LCA algorithm (Algorithm S3). Once this is done, implied speciation nodes are added, and
the speciation nodes are used to factor the gene tree. That is, for s ∈ V (S), we decompose G into disjoint
subtrees subtrees(s) that evolve within the species tree branch e(s); these subtrees can be partitioned from
G using roots(s) and leaves(s). In addition, for the remainder of the algorithm, we work with the pruned
species tree Ŝ = S(M∗(r(G))) as the gene tree evolves entirely within Ŝ.

Algorithm S3 LCA

Input: G, S, Le
Output: M∗

1: for g ∈ postorder(G) do
2: if g ∈ L(G) then
3: Set M∗(g) = Le(g).
4: else

5: Set M∗(g) = lcaS({M∗(g′),M∗(g′′)}), where g′ and g′′ denote the children of g.

S2.4 Enumerating Locus Maps

Let us start by considering the space of locus maps that can yield MP LCTs:

Proposition S2.2. There always exists a MP LCT that satisfies the following properties:

• The locus changes at most once along any branch of the gene tree. (This constraint is implicit in the
LCT definition.)

• The locus changes in at most one child for nodes internal to a species tree branch.

• The number of loci is at most one more than the minimum number of inferred duplications under the
duplication-loss model.
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For each gene tree branch e ∈ E(G), let changed(e) denote whether the locus changed along e; that is,
if e = (g, g′), then changed(e) is true if L(g) 6= L(g′) and false otherwise. Then one option for enumerating
locus maps is to consider all possible labels changed(e) for each gene tree branch e ∈ E(G), where these
labels must satisfy Proposition S2.2. We can then assign r(G) to an arbitrary locus and recur down G to
determine the locus assignments for all g ∈ V (G). However, this brute-force approach neglects to reuse
information across locus maps. In particular, knowledge of the loci at the speciation nodes would allow us
to infer the loci within each species tree branch independently of one another; thus, rather than considering
the entire locus map at once, we focus separately on each species tree branch.

For s ∈ V (S), let L(s) denote the set of locus maps for the nodes in species tree branch e(s); that is,
each item of L(s) is a species-specific locus map Ls : roots(s) ∪ nodes(s) → L defined only on the set of
gene tree nodes within e(s) (inclusive of the root nodes). We can determine L(s) using subtrees(s) and
changed(e). In particular, we start by assigning r(G) to an arbitrary locus. Then for each species tree node
s in pre-order traversal, we consider all labels changed(e) for e ∈ E(T ), T ∈ subtrees(s), where these labels
must satisfy Proposition S2.2. Next, if s = r(S), we combine changed with knowledge of the locus at r(G)
to find L(s). If s 6= r(S), we iterate over the locus maps L(p(s)) for the parent species. Note that each
locus map L′ ∈ L(p(s)) defines a locus assignment for leaves(p(s)), which equals the locus assignment for
roots(s). Thus, combining changed with L(p(s)) determines L(s). While this implementation is currently
equivalent to the brute-force approach, we shall see later how L(p(s)) can be replaced by a set of relative
locus maps RL(p(s)) to reduce redundancy.

The pseudo-code for this algorithm differs slightly from our description here as we have used RL(p(s))
in place of L(p(s)) for the input (Algorithm S4). Furthermore, for clarity, we do not include the third locus
map constraint (on the maximum number of loci in a MP LCT) in our algorithm; to include this constraint,
we must keep track of the cumulative (minimum) number of duplications for each locus map as we traverse
down the species tree.

Algorithm S4 EnumerateLoci

Input: G, M∗, s ∈ V (Ŝ), RL(p(s)) if s 6= r(Ŝ)
Output: L(s)
1: Initialize L(s) = ∅.
2: for T ∈ subtreesM∗(s) do
3: Assign all combinations C(T ) of changed(e)∀e ∈ E(T ) subject to the constraints of Proposition S2.2.
4: if s = r(Ŝ) then
5: Initialize RL′(r(G)) = l0. Set RLp to be the set (of size 1) that includes RL′.
6: else

7: Set RLp = RL(p(s)). {each item of RLp is a choice for RL′ : leavesM∗(p(s)) → L̂}
8: for RL′ ∈ RLp do

9: for all combinations of C(T )∀T ∈ subtreesM∗(s) do {this defines changed(e)∀T ∈ subtreesM∗(s), e ∈
E(T )}

10: If s 6= r(Ŝ), set Ls defined on rootsM∗(s) using RL′. Else set Ls defined on r(G) using RL′.
11: Find Ls defined on nodesM∗(s) using changed(e)∀T ∈ subtreesM∗(s), e ∈ E(T ). If changed(e) is

true, the new locus must not currently exist in order to satisfy Constraint 5 of the LCT definition.
12: if not s ∈ L(Ŝ) ∧ ∃g, g′ ∈ leavesM∗(s) : g 6= g′; Ls(g) = Ls(g

′) then {check Constraint 3 of the
LCT definition}

13: Add Ls to L(s).

S2.5 Inferring an Optimal Order for Each Locus Map

At this point, an optimal species map M∗ and the set L(s) of species-specific locus maps for each s ∈ V (S)
is known. What remains to be determined is an optimal order O∗

Ls
for each locus map Ls ∈ L(s).

Proposition S2.3. Let α∗ = 〈M∗,L∗,O∗〉 be a MP LCT. If M∗ and L∗ are known, then an optimal
associated order O∗ = argminO R〈M∗,L∗,O〉 is one such that for s ∈ V (S), l ∈ parent loci(s), O∗ enforces a
total order on O(s, l) such that duplications are as early in the species tree branch as possible.
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Thus, for each locus map Ls ∈ L(s), rather than using brute-force to enumerate all orders then choosing
an optimal O∗

Ls
, Proposition S2.3 allows us to intelligently infer O∗

Ls
(Algorithm S5).

Algorithm S5 FindOrder

Input: G, M∗, s ∈ V (Ŝ), Ls

Output: O∗
Ls

1: for l ∈ parent lociM∗,Ls
(s) do

2: Initialize Ô∗
Ls
(s, l) (to an empty ordered set).

3: Find start lineagesM∗,Ls
(s, l).

4: Initialize the set of nodes that require ordering X = OM∗,Ls
(s, l).

5: Initialize the set of current lineages X = start lineagesM∗,Ls
(s, l).

6: For g ∈ X , let d(g) = dG(r, g), where e(r) ∈ X and r ≤G g, be the length of the path to a current
lineage.

7: while ∃g ∈ X : Ls(g) 6= l do {extra lineages can be incurred due to duplications}
8: Select g from among the set { g : g = argming′∈X : Ls(g′) 6=l d(g

′) } of nodes mapped to a different
locus with shortest path to a current lineage.

9: if dG(r, g) > 1 then {g cannot be immediately added}
10: for g′ along the path from r to g (non-inclusive) do
11: Add g′ to Ô∗

Ls
(s, l). Remove g′ from X . Remove (p(g′), g′) from X , and ∀g′′ ∈ c(g′), add

(g′, g′′) to X .
12: Add g to Ô∗

Ls
(s, l). Remove g from X . Remove (p(g), g) from X . (g maps to a different locus so

c(g) do not affect X .)
13: while |X | > 0 do {there remain nodes to be ordered}
14: Select g from among the set { g : g ∈ X ; d(g) = 1 } of immediate descendants of current lineages.
15: Add g to Ô∗

Ls
(s, l). Remove g from X . Remove (p(g), g) from X , and ∀g′ ∈ c(g), add (g, g′) to X .

16: Combine Ô∗
Ls
(s, l)∀l ∈ parent lociM∗,Ls

(s) to find an optimal order O∗
Ls
.

S2.6 Computing Relative Locus Maps

For s ∈ V (S) and Ls ∈ L(s), the reconciliation cost of 〈M∗,Ls,O∗
Ls
〉 can finally be computed. For the

last step within the species tree branch, let RLs : leaves(s) → L̂ denote a species-specific relative locus map
defined on the leaf nodes of species s. For s ∈ V (S), we remap the set L(s) of absolute locus maps to a set
RL(s) of relative locus maps. Additionally, we keep a mapping RAs : RL(s) → L(s) of each relative locus
map to its optimal underlying (absolute) locus map and a lookup table Cs(lt, lb) that denotes the minimum
cost of assigning lt and lb to rootsM∗(s) and leavesM∗(s), respectively (Algorithm S6).

S2.7 Inferring an Optimal Locus Map and Order

At this point, the set of relative locus maps are known for all speciation nodes, allowing us to use dynamic
programming to determine an optimal relative locus map for the speciation nodes (Algorithm S7). For
s ∈ V (S), let F (s, l, p) denote the cost-to-go of assigning relative loci l at the top (p = t) or bottom (p = b)
of species tree branch e(s), where the cost-to-go is defined as the minimum total cost along all descendant
species tree branches. In the forward phase, we perform a post-order traversal of the species tree, where
at each node s ∈ V (S), we first determine the cost-to-go of assigning lb at leaves(s), then determine the
cost-to-go of assigning lt at roots(s), for all possible choices of relative loci lt and lb. At the root of the
species tree, the minimum cost solution is selected. Then, in the backward phase, we perform a pre-order
traversal to traceback down the species tree, where at each node s ∈ V (S), we assign an optimal relative
locus map RL∗

s .
Finally, as stated in the main text, for each s ∈ V (Ŝ), we can use RL∗

s in conjunction with RAs to look
up L∗

s, which in turn can be used to look up O∗
L∗

s

. These are the subparts of L∗ and O∗, and together with
our previously inferred optimal species map M∗, constitutes the MP LCT.
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Algorithm S6 RemapLoci

Input: G, M∗, s ∈ V (Ŝ), L(s), R〈M∗,Ls,O∗

Ls
〉(s)∀Ls ∈ L(s)

Output: RL(s), RAs, Cs
1: Initialize RL(s) = ∅.
2: Initialize the locus count n = 0.
3: Arbitrarily order leavesM∗(s), for example, each g ∈ leavesM∗(s) is ordered by its index in a preorder

traversal of G.
4: for Ls ∈ L(s) do
5: Set g to be the first node in leavesM∗(s).
6: Set RLs(g) = ln. Set map(Ls(g)) = ln. Increment n.
7: for each successive g ∈ leavesM∗(s) do
8: if Ls(g) is not already defined in map then

9: Set map(Ls(g)) = ln. Increment n.
10: Set RLs(g) = map(Ls(g)).
11: Add RLs to RL(s).
12: Set cost(Ls,RLs) = R〈M∗,Ls,O∗

Ls
〉(s).

13: for RLs ∈ RL(s) do
14: Find L̂s = argminLs

cost(Ls,RLs). Set RAs(RLs) = L̂s.

15: Find a relative locus map RL : rootsM∗(s) → L̂ from L̂s(g)∀g ∈ rootsM∗(s).
16: Set lt = RL(g)∀g ∈ rootsM∗(s), lb = RLs(g)∀g ∈ leavesM∗(s), Cs(lt, lb) = cost(L̂s,RLs).

Algorithm S7 FindOptimum

Input: G, Ŝ, RL(s)∀s ∈ V (Ŝ), Cs ∀s ∈ V (Ŝ)
Output: RL∗

s ∀s ∈ V (Ŝ)
1: for s ∈ postorder(Ŝ) do
2: for RLs ∈ RL(s) do
3: Set l = RLs(g)∀g ∈ leavesM∗(s).
4: if s ∈ L(Ŝ) then
5: Set F (s, l, b) = 0.
6: else

7: Set F (s, l, b) = F (s′, l, t) + F (s′′, l, t), where s′ and s′′ denote the children of s.
8: Set RLp = RL(p(s)) if s 6= r(Ŝ). Else set RLp to be the set (of size 1) with element lt such that lt

is empty (that is, at the root of the species tree, rootsM∗(s) is empty so no loci are assigned).
9: for RL′ ∈ RLp do

10: Set lt = RL′(g)∀g ∈ leavesM∗(p(s)) if s 6= r(Ŝ). Else set lt to be empty.
11: Find lb = argminl′

b
∈RL(s) F (s, l′b, b) + Cs(lt, l′b).

12: Set F (s, lt, t) = F (s, lb, b) + Cs(lt, lb).
13: Set TB(s, lt) = lb. {traceback pointer}
14: for s ∈ preorder(Ŝ) do
15: if s = r(Ŝ) then
16: Set lt to be empty. {locus map at top of species tree root is known}
17: else

18: Set lt using RL∗
p(s). {locus map at top of species is equal to locus map at bottom of parent species}

19: Set RL∗
s using lb = TB(s, lt). {use traceback to assign locus map at bottom of species}
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S3 Proofs

Proof of Proposition S1.1

Proof. We first prove that if post-coalescence duplications exist, then delayed speciation nodes are required.
This follows directly from Definition S1.2 by observing that g′ and g′′ must be delayed speciation nodes.

Next we prove that if delayed speciation nodes are required, then post-coalescence duplications exist.
This is equivalent to stating that if post-coalescence duplications do not exist, then delayed speciation
nodes are not required. Intuitively, this should be true because an absence of post-coalescence duplications
means that nothing has occurred in the locus between the speciation event and the coalescence event; thus,
we do not need to model the delay between speciation and coalescence. Formally, since g′ and g′′ are
delayed speciation nodes, each has a single child cg′ and cg′′, respectively. Furthermore, if there are no
post-coalescence duplications, then L(g) = L(g′) = L(g′′). These two observations, in conjunction with
M(g) = M(g′) = M(g′′), allows us to replace node g′ and edges (g, g′), (g′, cg′) with a single edge (g, cg′)
and replace node g′′ and edges (g, g′′), (g′′, cg′′) with a single edge (g, cg′′), thus removing the delayed
speciation nodes g′, g′′.

Remark. Note that while node g has been rounded to the point of speciation, the actual coalescence at g may
still occur prior to the speciation. This is an important point as the time of coalescence may affect the number
of extra lineages. The discussion here simply shows that, assuming that post-coalescence duplications are
not allowed, we do not need to add delayed speciation nodes to explicitly model the delay between speciation
and coalescence.

Proof of Proposition S1.2

Proof. Under the assumption that losses incur a positive cost, for a given locus tree and species tree, LCA
reconciliation is the unique solution that minimizes the total duplication and loss cost (Górecki and Tiuryn
2006). Thus, the proposition is equivalent to the following: for a LCT, consider the associated locus tree
and reconciliation between the locus tree and the species tree (both of these are implicit in a LCT); if the
reconciliation has minimum duplication and loss cost, then there are no post-coalescence duplications. We
prove by contrapositive: if there are post-coalescence duplications, then the reconciliation between the locus
tree and species tree (implied by the LCT) does not have minimum duplication and loss cost. Note that
for the LCT, we must fix the implied locus tree topology TL; otherwise, there could exist a different locus
tree topology with lower minimum duplication and loss cost, but this has no bearing on the whether the
reconciliation between locus tree TL and species tree S is the LCA mapping.

For g, g′, g′′, cg′, cg′′ as previously defined, assume that a post-coalescence duplication has occurred along
(g, g′) so that L(g) 6= L(g′). Let l = L(g) denote the original locus, l′ = L(g′) denote the new locus, and
let s′ = M(cg′) and s′′ be the child of s that is not s′. Because |c(g′)| = 1 and a locus can be created
only once in the LCT, l′ cannot exist in s′′, that is, l′ is lost in s′′. Now consider alternative scenarios in
which we remove the duplication along (g, g′). Such an operation has no effect on the LCT beyond g, g′, cg′,
in particular, the resulting LCT is valid. (1) If L(cg′) 6= l′, then the duplication along (g, g′) was followed
by a duplication along (g′, cg′), and removing the duplication along (g, g′) would not affect the locus tree
topology but would reduce the number of duplications by one and remove the loss of l′ in s′′, thus reducing
the number of losses by one. (2) If L(cg′) = l′ then “pushing” the duplication from (g, g′) to (g′, cg′) would
not affect the locus tree topology nor the number of duplications but would remove the loss of l′ in s′′, thus
reducing the number of losses by one. In either alternative scenario, the number of extra lineages may also be
affected. However, what is important is that the original scenario, with the post-coalescence duplication, has
the same locus tree topology but a locus tree-species tree reconciliation that does not minimize the number
of duplications and losses, thus completing our proof.

Proof of Theorem S2.1

Strictly speaking, we do not require LCA reconciliation between the locus tree and species tree. Rather, we
require the following weaker condition: post-coalescence duplications have not occurred. We have chosen to
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phrase Theorem S2.1 in terms of the LCA reconciliation between the locus tree and species tree since the
concept of post-coalescence duplications is not intuitive and the former implies the latter (Proposition S1.2).

Consider the problem of mapping explicit nodes in the coalescent tree to a node in the species tree. The
outline of our proof is as follows:

1. Let α∗ = 〈M∗,L∗,O∗〉 be a MP LCT in which M∗ is not the LCA reconciliation.
2. There exists an explicit node g ∈ I(G) such that M∗(g) is not the LCA mapping.
3. There exists an alternative LCT ᾱ = 〈M̄, L̄, Ō〉 in which g is mapped “down” the species tree and ᾱ

implies the same number of duplications and losses as α but implies one fewer extra lineage.
4. The reconciliation cost of the alternative LCT is lower than than of the original LCT, that is,Rᾱ < Rα∗ .
5. α∗, in which M∗ is not the LCA reconciliation, cannot be a MP LCT.

Obviously, 1 implies 2, 3 implies 4, and 4 implies 5; thus we only need to prove that 2 implies 3. For
notational simplicity, we remove the asterisks and consider α = 〈M,L,O〉. Supplemental Figure S3 may
also be useful in following this proof. Finally, note that this proof is conceptually simple but requires a large
amount of setup and mathematical notation to be precise.

If M is not a MP LCT, let g ∈ I(G) denote an explicit node that is not mapped to the LCA, and let g′

and g′′ denote the children of g. By definition, g can be mapped down the species tree, meaning that g′ and
g′′ must evolve down the same child species. That is, g′ and g′′ must map to the same child species or to
the descendants of the same child species. Without loss of generality, we assume the former; else, nodes can
be added along (g, g′) and (g, g′′) until the new children of g map to the same child species. Formally, let
s ∈ I(S) be the species such that M(g) = s, let s′ ∈ c(s) be the child species such that M(g′) = M(g′′) = s′,
and let s′′ be the child species that is not s′. Also, let l = L(g).

For our proof, we must consider how the implied evolutionary events change between this original scenario
α = 〈M,L,O〉 and an alternative scenario ᾱ = 〈M̄, L̄, Ō〉 in which g is mapped down the species tree to
s′. Recall that we have assumed α is a MP LCT; that is, L and O are an optimal locus map and order for
the species map M. However, in the alternative scenario, we have full control over L̄ and Ō. In particular,
these do not have to be an optimal locus map and order for the species map M̄; we must only show that
there exists a L̄ and Ō for M̄ such that ᾱ implies the same number of duplications and losses as α but fewer
extra lineages.

Now let us understand how the gene tree maps within the species tree as implied by M and M̄. Be-
cause we have assumed no post-coalescence duplications, delayed speciation nodes are unnecessary (Propo-
sition S1.1). Therefore, for α, g is mapped to the bottom of species tree branch e(s) and lineages (g, g′)
and (g, g′′) are found at the top of species tree branch e(s′). However, for ᾱ, an implied speciation node is
necessary so as not to force the original parent node of g to map to the bottom of species tree branch e(s).
That is, let pg = p(g) denote the original parent node of g; we break up (pg, g) by adding implied speciation
node sg (and setting M(sg) = s); this creates branches (pg, sg), (sg, g) with lineage (sg, g) at the top of
species tree branch e(s′).

Finally, consider possible cases for α. Recall that we have assumed no post-coalescence duplications,
that is, duplications are not allowed along either child branch of the explicit node so L(g′) = L(g′′) = l.
Therefore, we must consider two cases:

1. No duplication has occurred along the branch leading to the explicit node g (Supplemental Figure S3A,
top): L(p(g)) = l. For ᾱ, choose L̄ to “match” L (Supplemental Figure S3A, bottom): L̄(sg) = l, and
for all other nodes, L̄(v) = L(v) (where we have used v so as not to confuse a node with g). Also,
choose Ō to “match” O: all v remain in the same position except g is replaced by sg for Ō(s, l) and g
is moved to the first position in Ō(s′, l), assuming that l is a parent locus of a duplication in s and s′,
respectively. Then, comparing α and ᾱ, the only difference is in the number of lineages that exist at the
species breakpoint between s and s′; thus, the numbers of duplications, losses, and extra lineages due
to duplications remain unchanged. To consider how the number of extra lineages due to speciations is
affected, we determine the set X of lineages in locus l at the top of e(s′) as all other species and loci are
unaffected. For α, X includes lineages (g, g′), (g, g′′), and possibly k other lineages, thus incurring k+1
extra lineages. In comparison, for ᾱ, X includes lineage (sg, g) and k other lineages, thus incurring k
extra lineages. That is, ᾱ implies one fewer extra lineage (due to speciation) than α.

2. A duplication has occurred along the branch leading to the the explicit node g (Supplemental Fig-
ure S3B, top): L(p(g)) 6= l. For ᾱ, as with the previous case, we choose L̄ and Ō to “match” L
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and O, respectively, with the difference that the duplication along (p(g), g) in α remains in species s
but occurs along (pg, sg) in ᾱ (Supplemental Figure S3B, bottom). Then, a comparison of implied
evolutionary events for α and ᾱ is identical to the previous case, that is, the numbers of duplications,
losses, and extra lineages due to duplications remain unchanged but the number of extra lineages due
to speciations decreases by one.

Remark. We now consider the implications of allowing post-coalescence duplications. If a post-coalescence
duplication has occurred, delayed speciation nodes are necessary (Proposition S1.1). That is, for α, we break
up (g, g′) and (g, g′′) by adding implied speciation nodes sg′ and sg′′, respectively, thus creating branches
(g, sg′), (sg′, g′), (g, sg′′), (sg′′, g′′) with M(sg′) = M(sg′′) = s and with lineages (sg′, g′), (sg′′, g′′) at the
top of species tree branch e(s′). Furthermore, the locus of at least one node sg′ or sg′′ is different from the
locus of g; assume that L(sg′′) 6= l (Supplemental Figure S3C). Then shifting g in the alternative scenario ᾱ
may induce more events. In particular, sg′ and sg′′ do not exist in ᾱ, but setting M̄(g) = s′ would require
us to determine where to place the duplication originally found along (g, sg′′). If the duplication remains
in species s (that is, L̄(pg) 6= L̄(sg)), then L̄(g′) = L̄(g′′) so that ᾱ may no longer be a valid LCT. Adding
another duplication along (g, g′′) to force L̄(g′) 6= L̄(g′′) would, of course, go against our efforts by incurring
an additional duplication. Otherwise, if the duplication is “pushed” to occur along (g, g′′) in species s′ (that
is, L̄(g) 6= L̄(g′′)), then ᾱ may incur more extra lineages due to duplication compared to α. This is because
the duplication now occurs later in the gene evolutionary history; therefore, bifurcations in the gene tree in
locus l between the time of the old duplication event in α and the new duplication event in ᾱ could result
in additional lineages in locus l that are contemporaneous to the duplication along (g, g′′) in ᾱ.

Proof of Proposition S2.2

We prove each component separately:

1. Allowing multiple changes would incur additional duplications and losses, and possibly additional extra
lineages, and therefore be strictly less parsimonious.

2. Consider a gene tree node that is internal to a species tree branch and has two children that map to
distinct loci that are both different from the locus of their shared parental node (ex. Figure 3B, map
6); such a scenario would correspond to a locus duplicating twice to create two daughter loci, possibly
followed, as in the figure, by the original mother locus becoming lost. An alternative explanation is
for the original locus to duplicate, then for the new locus to duplicate, again possibly followed by the
original locus becoming lost (ex. Figure 3B, map 5). These two evolutionary histories are identical in
terms of locus assignments after the double round of duplications, and the latter is always at least as
parsimonious as the former. (In particular, extra lineages can be incurred in the former if there exist
additional lineages in the same locus. In the figure, an additional red lineage in maps 5 and 6 would
result in one extra lineage at the root of the species tree branch in both maps, but map 6 would also
incur an extra lineage at the first duplication.)

3. Incorporating ILS allows a decrease in the number of inferred duplications. If extra lineages have a low
cost, very few duplications can be inferred, in particular fewer duplications than in a duplication-loss
model. As this cost increases, reconciliation reverts to a duplication-loss model, thus giving an upper
bound on the maximum number of duplications, and consequently, the maximum number of loci, in
the MP LCT.

Proof of Proposition S2.3

Recall that O defines ordered sets Ô(s, l)∀s ∈ V (S), l ∈ parent loci(s). Furthermore, Ô(s, l) only affects
the number of extra lineages due to duplications, and each Ô(s, l) affects this number independently. This
observation allows to infer an optimal ordered set Ô∗(s, l) independently for each s ∈ V (S), l ∈ parent loci(s).
In particular, to find Ô∗(s, l), we begin with start lineages(s, l) and intelligently choose the next node
g ∈ O(s, l) until all nodes have been exhausted. To optimally select g, realize that the lineage count in l
decreases by one every time L∗(g) 6= l (due to a duplication). Otherwise, assuming L∗(g) = l, if g ∈ leaves(s),
then the lineage count either is unchanged (if |c(g)| ≤ 1; note that if |c(g)| = 0, then s = L(S) but extant
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genes exist to present day and are not removed from the set of lineages) or increases by one (if |c(g)| = 2),
and if g ∈ nodes(s) \ leaves(s), then the lineage count increases by one (since |c(g)| = 2). That is, choosing
the next node g : L∗(g) 6= l decreases the lineage count, and choosing g : L∗(g) = l either has no effect or
increases the lineage count. Thus, Ô∗(s, l) should have all duplications as early in the species tree branch as
possible.

Remark. Note that we have not shown that all O∗ = argminO R〈M∗,L∗,O〉 satisfy this property. This theorem
simply states that this particular O∗ is an optimal solution.

S4 Comparison with the Three-Tree Model

The idea for separating the locus history and coalescent history of a gene family was initially proposed in
the three-tree model of DLCoal (Rasmussen and Kellis 2012). There, the locus tree was introduced to trace
the history of a pool or set of sequences, namely all of the sequences in a population that belong to the
same species and the same locus. This is important as coalescence is restricted to sequences within the same
pool. In addition, each daughter edge (defined in the locus tree as the child lineage of a duplication that
has evolved in the new locus) has complete coalescence, that is, only one gene lineage is present at the top
of each daughter edge.

For a given gene tree and species tree, provided that the underlying evolutionary model used in phyloge-
netic reconstruction is compatible with the three-tree model, the reconciliation problem is to infer both the
“hidden” locus tree and the reconciliations between the three trees. DLCoal (Rasmussen and Kellis 2012)
separates the locus history and coalescent history of a gene family by explicitly representing the locus tree
and two-step reconciliations. Therefore, DLCoalRecon should ideally search over the space of locus trees
and reconciliations. However, the number of distinct locus tree topologies for a given set of extant sequences
is exponential in the number of extant sequences, making a full search infeasible. Furthermore, for a gene
tree, locus tree (with annotated daughter nodes), and species tree, only certain reconciliations are valid; in
particular, despite the LCA reconciliation being the optimal solution for minimizing deep coalescence and
minimizing duplications and losses, LCA reconciliation between the gene tree and locus tree and between
the locus tree and species tree may violate the requirement of complete coalescence in a daughter edge.

The LCT overcomes these challenges by collapsing the locus tree and reconciliations into the gene tree.
We accomplish this by tracking the locus directly within the gene tree. In addition, the LCT is a simplified
representation of the three-tree model. In particular, inferring the duplication-loss history of a gene family
requires a locus tree topology and its reconciliation to the species tree. That is, the dates of the ancestral
nodes in the locus tree are unknown. To overcome this problem, DLCoal models fully dated locus trees,
and DLCoalRecon integrates over many samples of duplication times (as speciation times are fixed by the
species tree) to yield the max a posteriori locus tree topology. In contrast, the LCT models only the locus
tree topology. In addition, though loci change along gene tree branches, the LCT locus map labels gene
tree nodes. In effect, the LCT rounds locus changes to the nearest node: for g ∈ V (G) : g 6= r(G), if
L(g) 6= L(p(g)), then the locus changes immediately before g. Despite these simplifications, the LCT can
model the same evolutionary histories captured by the three-tree model; this includes the popular and simple
duplication-loss only or coalescent-only models for gene evolution (Supplemental Figure S1B,C) as well as
more complicated histories involving duplications, losses, and ILS.

For the reconciliation problem, the LCT and DLCpar provide further advantages. Motivated by the
need for simple and efficient ILS-aware reconciliation algorithms, we chose to adopt a maximum parsimony
approach for DLCpar. This means fewer assumptions on the evolutionary model. As an example, unlike
DLCoalRecon, we do not assume that the locus tree evolves within the species tree according to a birth-death
process (Arvestad et al. 2004, Dubb 2005, Åkerborg et al. 2009, Rasmussen and Kellis 2011). Furthermore,
we can directly take into account the restrictions placed on a MP LCT by the gene tree and species tree. This
allows us to infer how the gene tree maps to the species tree (bypassing the locus tree) as well as enumerate
over the space of valid reconciliations. That is, we have a priori restricted the reconciliation search space.
In comparison, since it is impractical to search through the space of all possible reconciliations using the
three-tree model, DLCoalRecon uses a search strategy in which reconciliations are proposed then checked
for validity.

Finally, due to the small number of trees that have post-coalescence duplications, we have chosen to
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make DLCpar more efficient by disallowing post-coalescence duplications; thus, delayed speciation nodes
are not required (Proposition S1.1. However, note that no post-coalescence duplications does not imply
LCA reconciliation between the locus tree and species tree. This is an additional advantage of DLCpar over
DLCoalRecon; namely, while DLCoalRecon only searches over the space of locus trees and reconciliations
such that the reconciliation between the locus tree and the species tree is the LCA mapping, DLCpar actually
allows non-LCA reconciliation between the locus tree and species tree.

S5 Relating Duplication-Loss Events and Deep Coalescence Events

in a Parsimony Framework

Here, we discuss the implications of Zhang (2011) on our work. In particular, for gene tree G and species tree
S, Zhang (2011) presented a simple formula relating the number nC(G,S) of extra lineages (induced by deep
coalescence) to the numbers nD(G,S) and nL(G,S) of duplications and losses; however, his work applied
the duplication-loss and deep coalescence parsimony scores separately to the reconciliation between gene tree
and species tree. We highlight that our work jointly models duplication-loss and ILS. This is an important
distinction as it means that, for many gene families (in particular, those affected by duplication-loss and
ILS), the results of Zhang (2011) do not necessarily apply.

What about distinguishing between gene trees that are affected only by duplication-loss (DL) or deep
coalescence (DC)? Recall that we have assumed that genes that map to the same species must be paralogous
(as they belong to different loci), and contrast this with coalescent theory that traces orthologous genes.
This means that if multiple gene copies exist within any species, the gene tree must include duplications,
and distinguishing between DL and DC is moot. So let us restrict our analysis to uniquely-labeled gene
trees. For simplicity, we first consider equal costs for duplication, loss, and deep coalescence. In this case,
applying the results of Zhang (2011), the DC cost is always less than the DL cost:

DC cost = nC = nL − 2 · nD < nD + nL = DL cost

where we have hidden the dependencies on G and S for notational simplicity. This suggests that, if the
gene tree is incongruent to the species tree, we would always infer deep coalescence over duplication-loss.
We argue that this is acceptable as one-to-one gene families often assume that all genes are orthologous to
one another, so inferring deep coalescence is the “correct” solution. If the costs for duplication, loss, and
deep coalescence are unequal, then raising the cost C of deep coalescence (or lowering the costs D and L of
duplications and losses) could result in the DC cost being greater than the DL cost:

DC cost = C · nC = C · (nL − 2 · nD) > D · nD + L · nL = DL cost

This is, of course, exactly what we would want, since, choosing such costs implies that we prefer inferring
DL over DC.

S6 Duplication, Loss, and Coalescence Costs

As the locus tree is used to infer duplications, losses, orthologs, and paralogs, we assessed the robustness
of DLCpar to different event costs by analyzing the similarity of inferred locus trees. Using the parameter
setting D = L = 1, C = 0.5 as a reference, the Robinson-Foulds (RF) distances (Robinson and Foulds
1981) of locus trees reconstructed under varying costs were < 0.040 for fly population sizes ≤ 100 million
(max RF = 0.125 for N = 500 million, 4× rate) and < 0.022 for all primate datasets. We then analyzed
whether this similarity in locus tree topology translates to accurate event inference (Supplemental Figure S6).
While we have simulated a wide range of population sizes in order to analyze reconciliation performance for
datasets with a large amount of ILS, a biologically realistic range of population sizes is on the order of 1–50
million for Drosophila and 10–50 thousand for primates (Charlesworth 2009). In this population range, with
a duplication-loss rate equal to the estimated real rate, DLCpar performance as measured by topological
accuracy varies by 0.2–4.2% to a low of 94.8%, duplication precision by 0.2–9.6% to a low of 87.6%, and
loss precision by 0.4–17.2% to a low of 82.8%, with other metrics varying up to 9.6% to a low of 87.6%.
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If we consider only the primates datasets for which biologically reasonable population sizes change by 5×,
compared to the 50 million × difference in Drosophila, performance variation across all metrics is < 4.0%,
with the lowest metric at 94.6%. For larger population sizes or higher duplication-loss rates, more care must
be taken in choosing event costs, but as expected, as population size, and consequently ILS rate, increases,
a smaller coalescence cost (relative to duplication and loss costs) yields better performance.

S7 Search Heuristics

Some gene trees may be too complex for DLCpar to reconcile. In particular, large gene trees or gene trees
highly incongruent to the species tree contain many implied gene tree nodes, thus increasing the LCT search
space. To address this problem, we introduce two heuristics to the DLCpar algorithm.

The first heuristic bounds the LCT search space by limiting the maximum number of duplications,
losses, or loci in each species tree branch and by prescreening proposed locus maps. For the prescreen,
when enumerating locus maps, we keep track of the cost-to-go of varying loci assignments at the bottom
of each species tree branch, where the cost-to-go is the minimum total cost along all ancestor branches. If
the minimum cost-to-go cmin across all loci assignments exceeds a threshold pmin, then loci assignments
with cost-to-go exceeding pfactor ∗ cmin are pruned. Based on analysis of the simulated datasets, we chose
default parameters of 4 duplications and 4 losses per species tree branch (no restriction on the maximum
number of loci) and pmin = 5, pfactor = 2. We find this heuristic to have limited effect on algorithm
performance (Supplemental Figure S7). Compared to DLCpar, RF distances for DLCpar-bound are < 0.008
for fly population sizes ≤ 100 million (max RF = 0.032 for N = 500 million, 4× rate) and < 0.004 for all
primate datasets.

The second heuristic further limits the LCT search space by using the three-tree model and the hill-
climbing search strategy of DLCoalRecon (Rasmussen and Kellis 2012). We chose default search parameters
of 1000 iterations and 20 prescreens. Compared to DLCpar, RF distances for DLCpar-search are < 0.057
for fly population sizes ≤ 100 million (max RF = 0.142 for N = 500 million, 4× rate) and < 0.031 for all
primate datasets.

S8 Simulated Species Trees

We also assessed how DLCpar performance changes with varying speciation rates and species tree sizes. Here,
we used the simulated species trees of Wu et al. (2013), which were generated by TreeSample (Hartmann
et al. 2010) with a constant-rate birth-death model, a variety of settings for the speciation rate (0.05–1
events/species/myr) and tree size (5–100 extant species), and a fixed speciation rate-extinction rate ratio
(µ = 0.9λ). For each species tree, we used the DLCoal model, with parameters from the Drosophila clade, to
simulate gene trees, then used DLCpar, DLCoalRecon, and MPR to reconcile these gene trees with the species
tree. As before, DLCpar used the same event costs across all settings whereas DLCoalRecon was tuned to
each simulation setting. As with the simulated gene trees reconciled to real species trees, almost universally,
DLCpar shows dramatic improvement over other reconciliation programs (Supplemental Figure S9).

As the speciation rate increases, resulting in shorter branches in the species tree and therefore fewer
duplications and losses and more deep coalescence, a number of trends emerge. MPR performs consistently
low, and across all metrics, performance decreases with increasing speciation rate. The latter observation
suggests that the reconciliation problem becomes more difficult as the speciation rate increases and that the
increased ILS rate overcomes the lower number of implanted duplications and losses to result in more gene
tree-species tree incongruence. Of particular note is the dramatic drop in branch accuracy of the locus tree,
which was shown to be a robust metric in the gene tree reconstruction problem (Rasmussen and Kellis 2011,
Wu et al. 2013). In contrast, with increasing speciation rate, DLCpar and DLCoalRecon branch accuracies
remain consistently high, but more interestingly, topological accuracies increase. This is the reverse of our
observation in the previous simulation study, in which we found locus tree topological accuracy to be stable
or slightly decrease with increasing deep coalescence. The difference is that previously, increased population
sizes resulted in increased ILS rates without affecting the number of implanted duplications and losses,
whereas here, decreased speciation times result in increased ILS rates and fewer implanted duplications and
losses. Finally, for the last metrics, duplication and loss precision of DLCpar and DLCoalRecon decrease
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with increasing speciation rate, with DLCpar slightly outperforming DLCoalRecon in duplication precision
but DLCoalRecon holding a slight (but insignificant) edge in loss precision (where significance is measured
by overlap in the 95% confidence intervals). Overall, the robust performance of DLCpar, and to a lesser
extent, DLCoalRecon, suggests that varying speciation rates have limited effect on the accuracy of inferred
reconciliations when an ILS-aware method is used.

As the species tree size increases, larger numbers of duplication, loss, and coalescent events lead to more
gene tree-species tree incongruence and thus a more difficult inference problem. This is evident as all three
reconciliation programs show decreased locus tree topological accuracy with increasing tree size. Across the
other metrics, MPR performance is consistently low regardless of tree size, and except for the relatively
robust metric of branch accuracy, DLCoalRecon performance decreases rapidly with increasing tree size.
In contrast, DLCpar performance is highly robust to tree size. The noticeable exception is that DLCpar
loss precision is lower than that of DLCoalRecon for small species trees, but at these sizes, very few (single
digit) duplications and losses are simulated, meaning that small counts are likely the source of low precision
and explaining the larger variance in precision at small tree sizes. For larger tree sizes, DLCpar performs
substantially better than DLCoalRecon despite the average run time of DLCoalRecon being 16.8 (9.8)×
that of DLCpar for 50 (100) extant species. This is again likely attributable to the heuristic search strategy
and limited search space of DLCoalRecon. In evaluation, DLCoalRecon searched over the same number
of reconciliations regardless of species tree size, whereas DLCpar, by virtue of its algorithm, searched over
increasingly larger spaces as the species tree size increased.

15



Supplemental Figures and Tables

B

locus tree

"gene tree"

Figure S1. Models for gene family evolution. Evolution of a gene family is shown using the
three-tree model (left) and the labeled coalescent tree (right). (A) In the three-tree model, the (coalescent)
gene tree reconciles to the locus tree, allowing inference of ILS, and the locus tree reconciles to the species
tree, allowing inference of duplications and losses. (B) In a duplication-loss model, ILS is assumed not to
occur; thus, the gene tree and locus tree are congruent. Therefore, (1) effectively, the daughter lineage of a
duplication coalesces immediately with its parent lineage and (2) within each species, at most one lineage
exists per locus. In the LCT, this translates to (1) loci changes occur at nodes and (2) all coexisting
lineages within the same species tree branch belong to different loci. (C ) In a multispecies coalescent
model, duplications and losses are assumed not to occur; thus, the locus tree and species tree are
congruent. Therefore, there exists a single gene per extant species, and all lineages evolve within the same
locus. [Parts of this figure have been adapted with permission from (Rasmussen and Kellis 2012).]
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Figure S2. Delay between speciation and coalescence. (A) Explicit (−) and implicit (∗) speciation
nodes separate the gene tree into disjoint subtrees that evolve within the species tree branches. Note that
speciation nodes are rounded to the breakpoint between species. (B) Delay between speciation and
coalescence causes explicit speciation nodes to be found earlier in the tree and adds delayed speciation
nodes (+). It is now the delayed and implicit speciation nodes that separate the gene tree. (In particular,
previously defined explicit speciation nodes are no longer speciation nodes.) Note that this models the
same three trees as before (albeit with different timings), so delayed speciation nodes are unnecessary. (C )
Delayed speciation nodes are necessary when post-coalescence duplications have occurred (new locus in
dark blue). These duplications could instead be inferred in the child species, which would reduce the
number of losses without impacting the locus tree topology. Thus, such duplications are not possible if we
assume LCA reconciliation between the locus tree and species tree, as the LCA in this instance minimizes
the number of duplications + losses. In this example, duplication in the ancestral species of species B and
species C is followed by loss of the dark blue locus in species B and loss of the yellow locus in species C.
Inferring the duplication in species C instead would reduce the number of losses by one since the dark blue
locus is no longer lost in species B.
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A B C

Figure S3. Reducing the number of inferred evolutionary events by shifting gene tree nodes

down the species tree. Explicit nodes in the gene tree are mapped to a species (break between species
tree branches shown as blue line). Assume that there exists an explicit node (square) that is not mapped
to the LCA; thus, it can be mapped “down” the species tree. Such a shift is only possible if the children of
the explicit node evolve down the same child species; thus the other child branch in the species tree is not
shown. Lineages with an unknown locus mapping are depicted in gray. Note that other lineages may exist;
we have restricted the figure to a single triplet (parent with two children) for clarity. (A) No duplication
has occurred along any branch incident to the explicit node (top left), so delayed speciation nodes are
unnecessary (top right). Shifting the explicit node incurs one fewer extra lineage due to speciation
(bottom). In this example, in a non-LCA mapping, two red lineages at the species break implies one extra
lineage (top), whereas, by shifting the explicit node, one red lineage at the species break implies no extra
lineages (bottom). The numbers of implied duplications, losses, and extra lineages due to duplications are
unchanged. (B) A duplication has occurred along the parent branch of the explicit node (top); if the
explicit node is shifted to the child species but the duplication remains in the original species (bottom), this
is identical to case A. (C ) A duplication has occurred along a child branch of the explicit node, between
the time of coalescence and the speciation event; such a duplication is a post-coalescence duplication and is
not allowed if we assume LCA reconciliation between the locus tree and species tree. That is, the lineage
with the new locus (yellow) evolves down a single child species, so the duplication can be shifted to occur
in the child species, immediately after the speciation, which would incur one fewer loss without impacting
the locus tree topology. Note that if the lineage with the new locus evolved down multiple children species
(not shown), the duplication could not be shifted because the speciation node with the new locus would
have two children, making it impossible to shift the duplication down a single lineage.
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Figure S4. Species and phylogenies used in evaluation. For our evaluation on simulated data, we
used (A) 15 primates (plus two outgroup species), (B) 12 Drosophila species, as well as simulated
phylogenies. (C ) For our evaluation on real data, we used 16 fungal species.
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Figure S5. Phylogenetic accuracy of DLCpar on simulated fly and primate gene trees. DLCpar
(solid), DLCoalRecon (dot), and MPR (dash) were used to reconcile simulated gene trees. Duplication and
losses were simulated at rates that were the same as (1×, red), twice (2×, green), and four times (4×, blue)
the rate estimated in real data. See also Figure 4, which corresponds to simulation at 1× rate.
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Figure S6. Phylogenetic accuracy of DLCpar on simulated gene trees using various event

costs. DLCpar was run on simulated fly and primate datasets using D = L = 1, and a range of costs C for
extra lineages. The difference in precision or accuracy compared to DLCpar with C = 0.5 is shown for
C = 0.25 (solid), C = 0.75 (dash), C = 1 (dot). A comparison to DLCoalRecon is also shown (lighter
colors, long dash), and the gray line indicates no change. For details on the simulation procedure, see
Figure 4 and Supplemental Figure S5.
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Figure S7. Phylogenetic accuracy of DLCpar on simulated gene trees using search heuristics.

DLCpar was run on simulated fly and primate datasets using D = L = C = 1 and two search heuristics.
The difference in precision or accuracy compared to DLCpar (without search heuristics) is shown, with the
gray line indicating no change. In DLCpar-bound (solid), the search space was limited by pre-screening
locus maps and enforcing upper bounds on the maximum number of duplications and losses per species. In
DLCpar-search (dash), the three-tree model rather than the LCT model was used, and a local hill-climbing
strategy was employed to search the space of locus trees and reconciliations (as in DLCoal). For details on
the simulation procedure, see Figure 4 and Supplemental Figure S5.
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Figure S8. Phylogenetic accuracy of NOTUNG on simulated gene trees. In addition to DLCpar
(black solid), DLCoalRecon (black dot), and MPR (black dash), NOTUNG (colored) was used to reconcile
simulated gene trees. To infer ILS, NOTUNG reconciles binary gene trees to non-binary species trees; the
species trees used in reconciliation are shown at right, with multifurcated branches highlighted in red. For
the fly dataset, we collapsed the shortest branch (blue), which separates the Sophophora and Drosophila
subgenera; the third shortest branch (green), which groups D. erecta and D. yakuba as sister species to D.
melanogaster though large portions of their genomes support alternative phylogenies (Pollard et al. 2006);
the three shortest branches (yellow); and all branches (red). For the primate dataset, we collapsed the
third shortest branch (blue), which implies that the relationships between the outgroup species and
primates are poorly resolved; the two shortest branches (green), which implies co-divergence of baboon,
macaque, and vervet and of human, chimp and bonobo, and gorilla; and all branches (red). For details on
the simulation procedure, see Figure 4.
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Figure S9. Phylogenetic accuracy and runtime of various reconciliation methods on

simulated species trees. Simulated species trees were obtained from Wu et al. (2013), which used
TreeSample (Hartmann et al. 2010) with a constant-rate birth-death model, varying speciation rates λ
(events/spec/myr) and tree sizes n (number of extant taxa), and extinction rates set to µ = 0.9λ, with 10
species trees simulated per setting. For each species tree, 100 locus trees and coalescent trees were
simulated using the DLCoal model (Rasmussen and Kellis 2012), with parameters from the fly clade
(λ = µ = 0.0012 events/gene/myr, N = 10 million, g = 0.1 yr). Finally, DLCpar (D = L = C = 1, red
solid), DLCoalRecon (green dot), and MPR (blue dash) were used to reconcile the simulated (coalescent)
gene trees. Performance is measured in terms of mean accuracy/precision and runtime, with bars
indicating the 95% confidence interval (mean ± 1.96 × standard error) across all species trees with the
same setting. (left) Performance for λ = 0.05, 0.1, 0.2, 0.5, 1.0 and n = 20. (right) Performance for λ = 0.2
and n = 5, 10, 20, 50, 100.
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Figure S10. Cumulative distribution of duplication consistency scores for all duplications

inferred on the real fungal dataset using several phylogenetic methods. Each program was used
genome-wide to infer the duplications present in 16 fungal species. For each duplication, we computed the
duplication consistency score, defined as |L ∩R|/|L ∪R|, where L and R are the sets of species present in
descendants left and right of the duplication node, respectively.

24



References
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